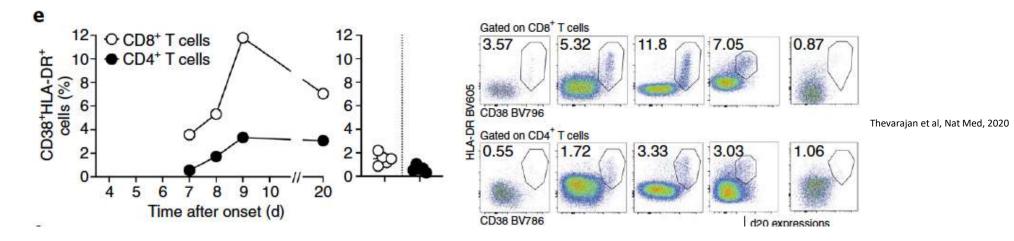

# SARS-CoV-2-specific T-cell responses in COVID-19 patients

Rory D de Vries, PhD

Assistant Professor Department of Viroscience Erasmus MC, Rotterdam the Netherlands

## **Role for T-cells in COVID-19**


#### COVID-19 patients present with low CD3<sup>+</sup>, CD4<sup>+</sup> and CD8<sup>+</sup> T cell counts

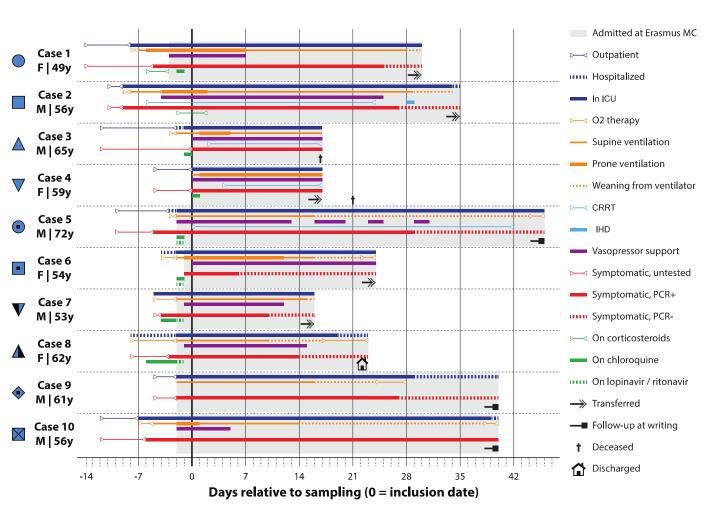


Lymphopenia is associated with disease severity

# **T-cell activation in COVID-19**

#### Increase in activated T-cells in PBMC fraction during COVID-19

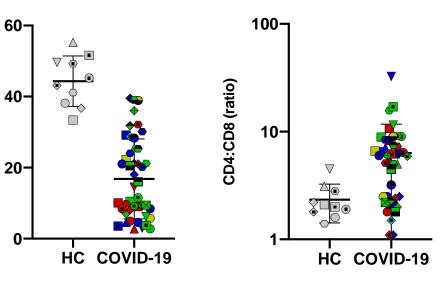




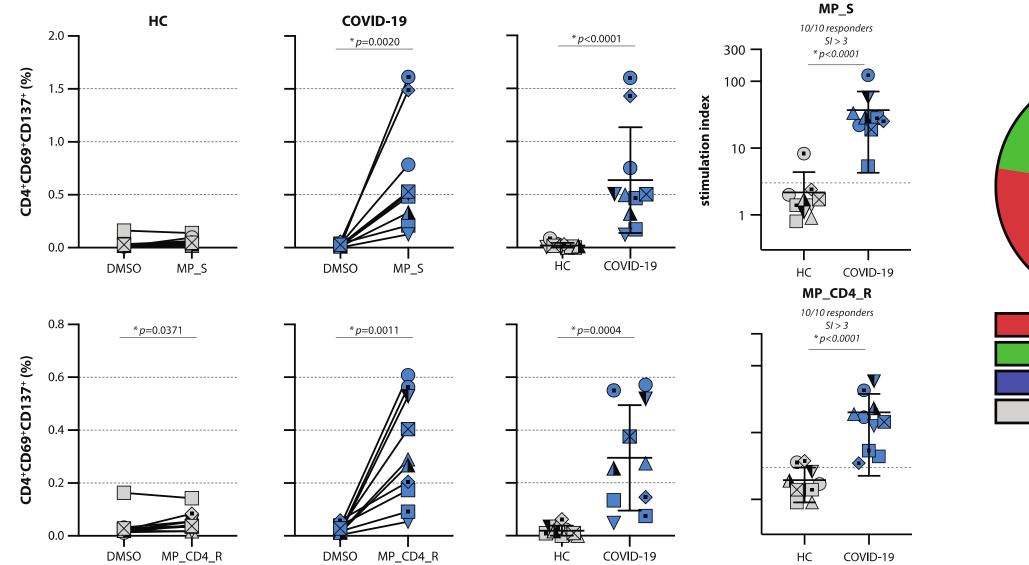

### **SARS-CoV-2-specific T-cells**

- What do we know about SARS-CoV-2-specific T-cells?
  - ±10 published papers out, many more prepints
  - Lymphopenia and immune hyperresponsiveness complex interaction between SARS-CoV-2 and the immune system that is not fully understood
- Immune hyperreactivity and high levels of cytokines observed in severe COVID-19
   Zhou et al, La Evangelos et

   IL-6, IL-10, IP10, etc


# Study cohort (Acute Respiratory Distress Syndrome)

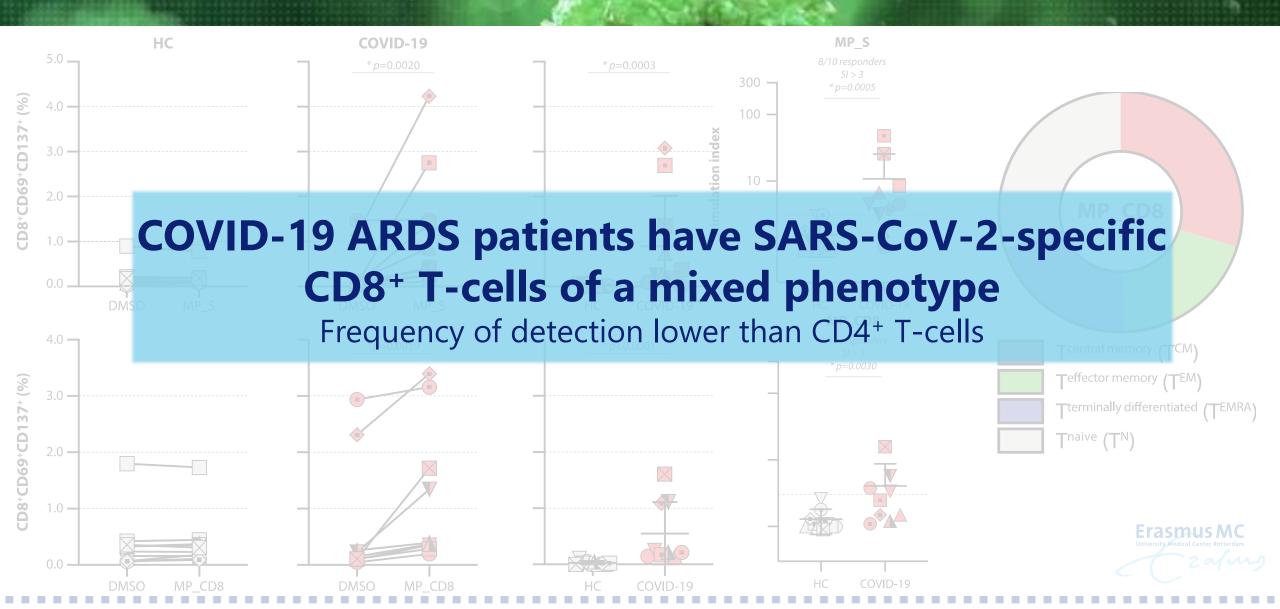



Study cohort

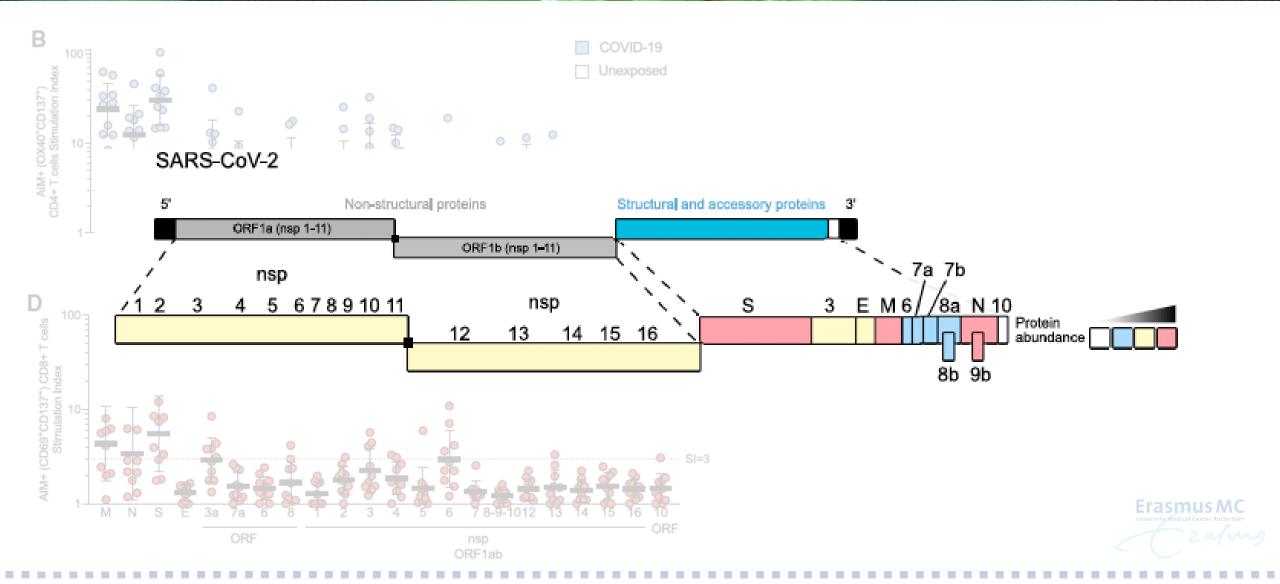
CD3+ (%)

- N=10 COVID-19 ARDS patients (expanding)
- N=10 age-matched healthy controls




Erasmus MC University Medical Center Rotterdam SARS-CoV-2-specific CD4<sup>+</sup> T-cells



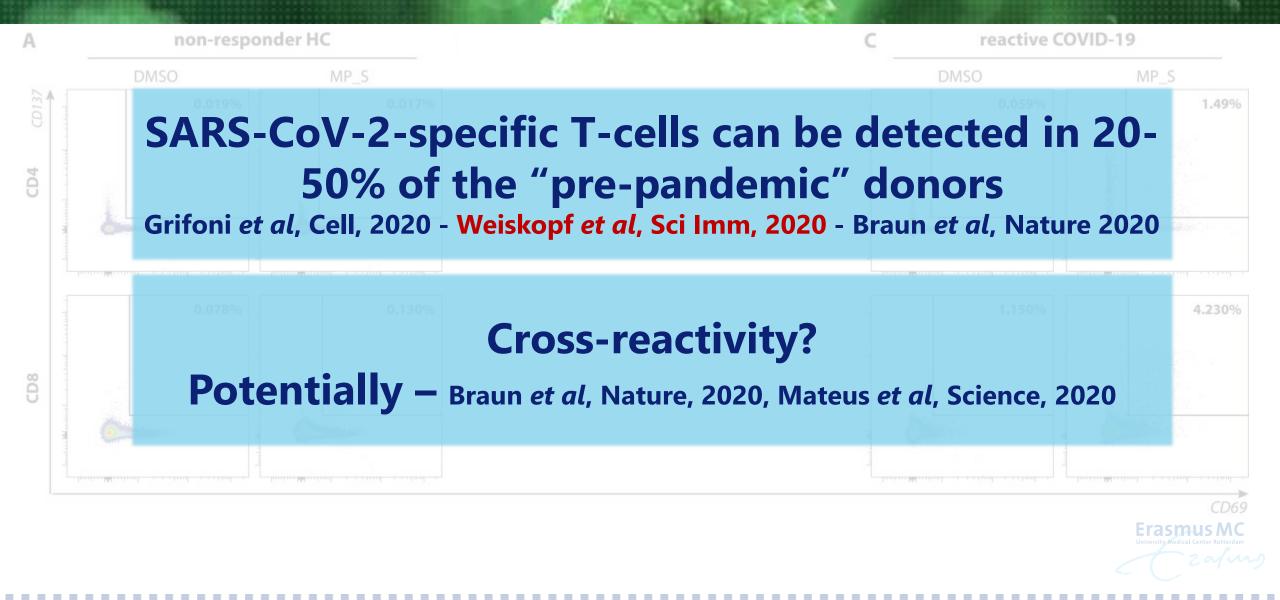

MP\_CD4\_R MP\_CD4\_R Tcentral memory (T<sup>CM</sup>) Teffector memory (T<sup>EM</sup>) Tterminally differentiated (T<sup>EMRA</sup>) Tnaive (T<sup>N</sup>)



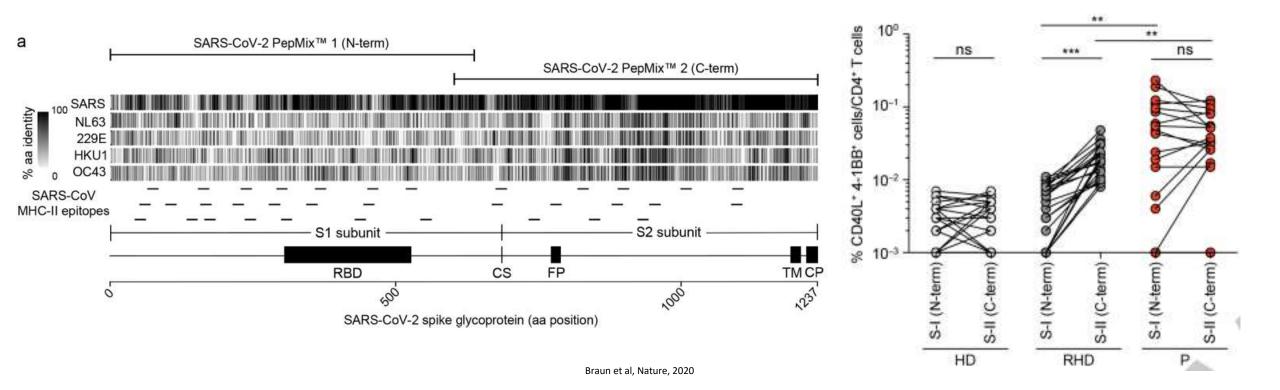
# SARS-CoV-2-specific CD8<sup>+</sup> T-cells



# S, M and N are the prominent targets




# SARS-CoV-2-specific T-cells - OVERVIEW


|                               |          | CD4+<br>MP_S | CD4 <sup>+</sup><br>MP_CD4_R | CD8 <sup>+</sup><br>MP_S | CD8 <sup>+</sup><br>MP_CD8 |
|-------------------------------|----------|--------------|------------------------------|--------------------------|----------------------------|
| Weiskopf et al, Sci Imm, 2020 | HC       | 1/10 (10%)   | 2/10 (20%)                   | 1/10 (10%)               | 0/10 (0%)                  |
|                               | COVID-19 | 40/45 (89%)  | 30/42 (71%)                  | 27/45 (60%)              | 15/41 (37%)                |
| Braun et al, Nature, 2020     | HC       | 24/68 (35%)  |                              |                          |                            |
|                               | COVID-19 | 15/18 (83%)  |                              |                          |                            |
| Grifoni et al, Cell, 2020     | HC       | 1/11 (9%)    | 4/11 (36%)                   |                          | 1/10 (10%)                 |
|                               | COVID-19 | 10/10 (100%) | 10/10 (100%)                 |                          | 7/10 (70%)                 |



### **Cross-reactive T-cells in HC**



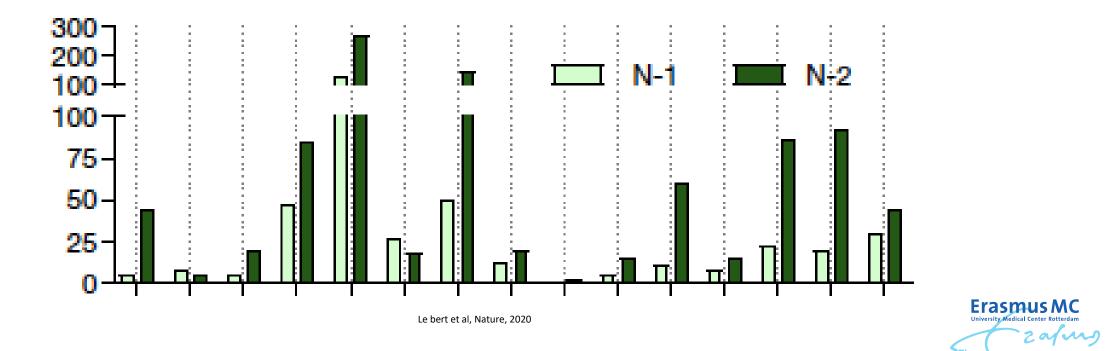
### **Cross-reactive T-cells in HC**





### **Cross-reactive T-cells in HC**

#### T-cell lines generated after peptide stimulation of PBMC from pre-pandemic donors


| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N <sub>326</sub>                                      | В                                                                                                                   | S <sub>816</sub> , donor 2209                                                                    | С              | S <sub>8</sub> .                                                                       | <sub>16</sub> , donor 2086                                                                    | D                           |                                                                                        | S <sub>1206</sub>                                                                           |                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------|
| 5000<br>4000-<br>3000-<br>4000-<br>4000-<br>4000-<br>4000-<br>4000-<br>4000-<br>4000-<br>4000-<br>4000-<br>4000-<br>4000-<br>4000-<br>4000-<br>4000-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>400-<br>40 | Seasona                                               | I HCoV                                                                                                              | s likely i                                                                                       |                | e T-                                                                                   |                                                                                               |                             | cross-                                                                                 | react                                                                                       |                             |
| 2000-<br>1000-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cross-                                                | reactive C                                                                                                          | <b>with S</b><br>D4+ T-cells                                                                     |                |                                                                                        |                                                                                               | ns /                        | eniton                                                                                 | <b>A</b> C                                                                                  |                             |
| 1 0.1<br>Pep<br>in Fluore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tide concentration<br>pSPOT assay (μg/mL)             |                                                                                                                     | proSPOT assay (μg/mL)                                                                            | target         |                                                                                        | de concentration<br>SPOT assay (μg/mL)                                                        | /115 /                      | Pepti                                                                                  | es 0.001 0.0001 0.00<br>de concentration<br>δPOT assay (μg/mL)                              | 0001                        |
| <ul> <li>SARS-CoV-</li> <li>229E</li> <li>HKU1</li> <li>NL63</li> <li>OC43</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PEGCVLTNTGSVVKP<br>PGNTFITVEAAIELS<br>PSVAVRTYSEAAAQG | 100       ● SARS-Co         40       ■ 229E         40       ▲ HKU1         33       ● NL63         40       ◆ OC43 | 0V-2 SFIEDLLFNKVTLAD<br>SAIEDILFSKLVTSG<br>SFFEDLLFDKVKLSD<br>SALEDLLFSKVVTSG<br>SAIEDLLFDKVKLSD | 47<br>73<br>53 | <ul> <li>SARS-CoV-2</li> <li>229E</li> <li>HKU1</li> <li>NL63</li> <li>OC43</li> </ul> | 2 SFIEDLLFNKVTLAD<br>SAIEDILFSKLVTSG<br>SFFEDLLFDKVKLSD<br>SALEDLLFSKVVTSG<br>SAIEDLLFDKVKLSD | 100<br>47<br>73<br>53<br>73 | <ul> <li>SARS-CoV-2</li> <li>229E</li> <li>HKU1</li> <li>NL63</li> <li>OC43</li> </ul> | YEQYIKWPWYIWLGF<br>VETYIKWPWWVWLCI<br>YEMYVKWPWYVWLLI<br>FENYIKWPWWVWLII<br>YEYYVKWPWYVWLLI | 100<br>60<br>67<br>60<br>67 |



# SARS-CoV-specific T-cells are long-lived

#### PBMC isolated from SARS recovered individuals 17 years after disease

Stimulated with N peptide pool



### **Summary and Discussion**

- SARS-CoV-2-specific CD4<sup>+</sup> and CD8<sup>+</sup> T-cells detected in blood of COVID-19 patients
  - S, M and N are the dominant targets
- (Dominant effector and Th1) cytokine production in response to viral antigen

#### What is the role of (cross-reactive) T-cells

- Reactive T cells were detected in HC after MP stim in -> cross-reactivity
   Also reported by Grifoni et al (US), Braun et al (Germany), Le Bert et al (Sinapore) and Meckiff et al (UK)
   Possible induction by circu (prevention of), es disease??
- SARS-CoV-specific T-cells are long-lived
- Detection of SARS-CoV-2-specific T-cells is an accurate measure of exposure

#### **Erasmus MC, Viroscience**

- Katharina Schmitz
- Matthijs Raadsen
- Nisreen Okba
- Richard Molenkamp
- Marion Koopmans
- Bart Haagmans
- Eric van Gorp
- Rik de Swart

#### Erasmus MC, ICU

- Henrik Endeman
- Johannes vd Akker

#### LJI, San Diego, USA

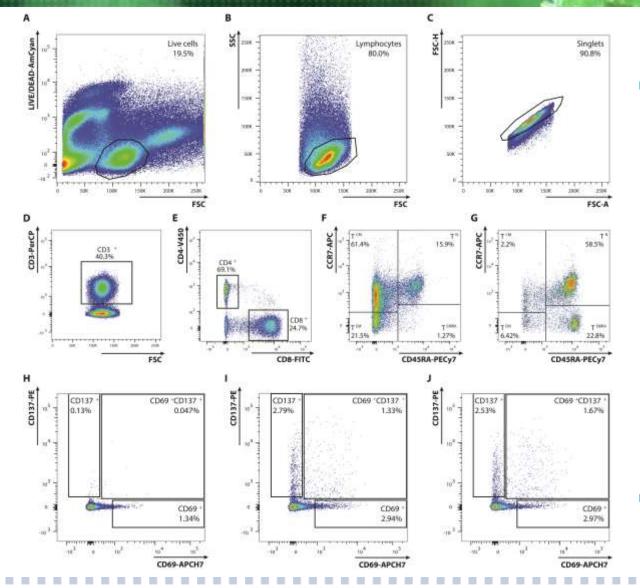
- Daniela Weiskopf
- Alba Grifoni
- Alessandro Sette



Life Without Disease.

# MegaPool (MP) stimulations

- Method: stimulate PBMC with peptide pools, detect T cell activation
- Specific peptide pools used (MegaPools, MPs)
  - MPs are pools with large numbers of peptides generated by sequential pooling and lyophilization.
  - Can incorporate overlapping peptides, or predicted or experimentally validated epitopes




## **Activation-Induced Markers (AIM)**

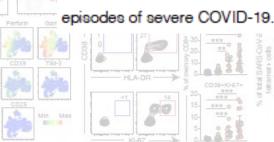
- Method: stimulate PBMC with peptide pools, detect T cell activation
  - Upregulation of activation markers CD69 and CD137 (20h stimulation)
  - Intracellular detection of IFNγ and TNFα (8h stimulation)
  - Cytokines measured in culture sup with multiplex beads assay (20h stimulation)



# **Activation-Induced Markers (AIM)**

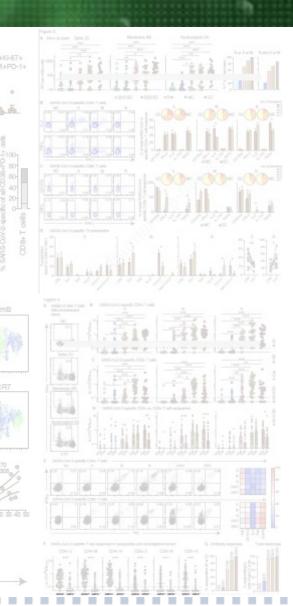


Gating strategy:


- A: LIVE cells
- B: Lymphocytes FSC / SSC
- C: Single cells
- D: CD3<sup>+</sup> cells
- E: CD4<sup>+</sup> / CD8<sup>+</sup> cells
- F/G: Memory phenotyping on basis of CD45RA / CCR7
- H: CD69 vs CD137 DMSO (- control)
- I: CD69 vs CD137 CMV (+ control)
- J: CD69 vs CD137 MP\_S
- Double positive cells in J used in graphs



### **T-cells in absence of seroconversion**








SARS-CoV-2-specific memory T cells will likely prove critical for long-term immune protection against COVID-19. We here systematically mapped the functional and phenotypic landscape of SARS-CoV-2-specific T cell responses in unexposed individuals, exposed family members, and individuals with acute or convalescent COVID-19. Acute phase SARS-CoV-2-specific T cells displayed a highly activated cytotoxic phenotype that correlated with various clinical markers of disease severity, whereas convalescent phase SARS-CoV-2-specific T cells were polyfunctional and displayed a stem-like memory phenotype. Importantly, SARS-CoV-2-specific T cells were detectable in antibody-seronegative exposed family members and convalescent individuals with a history of asymptomatic and mild COVID-19. Our collective dataset shows that SARS-CoV-2 elicits robust, broad and highly functional memory T cell responses, suggesting that natural exposure or infection may prevent recurrent

Sekine et al. Cell. 2020



### **Summary and Discussion**



The Netherlands Organisation for Health Research and Development Programme: Off Road 2016-2017

#### **Project summary**

Coronaviruses are endemic in humans and often cause a self-limiting infection with common cold-like symptoms. Some of the zoonotic high-threat emerging viruses are also coronaviruses: MERS-coronavirus (CoV) has recently been identified as novel zoonotic agent and is continuing to spill over to humans. Virus-specific cytotoxic T-cells, considered crucial for viral clearance, have not yet been detected for human coronaviruses. The overall aim of this proposal is to detect T-cells specific for endemic- and MERS-CoV and determine whether these T-cells can be cross-reactive. This will be addressed by probing blood samples from unique MERS-CoV-infected patients from the Middle East for endemic coronavirus-specific, MERS-CoV-specific and cross-reactive T-cells. As a proof of principle, I will develop a mouse model to prove that endemic coronaviruses can protect from MERS-CoV-related disease.

**Erasmus** MC